تبلیغات
لذت فهمیدن

لذت فهمیدن
علوم تجربی شیرین ترین درس دنیا 
قالب وبلاگ
نظر سنجی
لطفا نظر خود را درباره این وبلاگ بنویسید؟






بمب اتمی سلاحی است كه نیروی آن از انرژی اتمی و بر اثر شكاف هسته (فیسیون ) اتمهای پلوتونیوم یا اورانیوم ایجاد می شود .در فرآیند شكافت هسته ای ، اتمهای ناپایدار شكافته و به اتمهای سبكتر تبدیل می شوند .

بمب اتمی 2


نخستین بمب از این نوع ، در سال 1945 م در ایالات نیو مكزیكو در ایالات متحده آمریكا آزمایش شد . این بمب ، انفجاری با قدرت 19 كیلو تن ایجاد كرد ( یك كیلو تن برابر است با انرژی اتمی آزاد شده 190 تن ماده منفجره تی . ان . تی ) انفجار بمب اتمی موج بسیار نیرومند پرتوهای شدید نورانی ، تشعشعات نفوذ كننده اشعه گاما و نوترونها و پخش شدن مواد رادیو اكتیو را همراه دارد . انفجار بمب اتمی چندین هزار میلیارد كالری حرارت را در چند میلیونیوم ثانیه ایجاد می كند .

این دمای چند میلیون درجه ای با فشار بسیار
زیاد تا فاصله 1200 متری از مركز انفجار به افراد بدون پوشش حفاظتی صدمه می زند و سبب مرگ و بیماری انسان و جانوران می شود . همچنین زمین ، هوا آب و همه چیز را به مواد رادیو اكتیو آلوده می كند .

بمب های اتمی شامل نیروهای قوی و ضعیفی
اند كه این نیروها هسته یك اتم را به ویژه اتم هایی كه هسته های ناپایداری دارند، در جای خود نگه می دارند. اساسا دو شیوه بنیادی برای آزادسازی انرژی از یك اتم وجود دارد: 1- شكافت هسته ای: می توان هسته یك اتم را با یك نوترون به دو جزء كوچك تر تقسیم كرد. این همان شیوه ای است كه در مورد ایزوتوپ های اورانیوم (یعنی اورانیوم 235 و اورانیوم 233) به كار می رود.

برای تولید یك بمب اتمی موارد زیر نیاز
است:

یك منبع سوخت كه قابلیت شكافت یا همجوشی را داشته باشد
.

دستگاهی كه همچون ماشه آغازگر حوادث باشد
.

راهی كه به كمك آن بتوان
بیشتر سوخت را پیش از آنكه انفجار رخ دهد دچار شكافت یا همجوشی كرد.

در
اولین بمب های اتمی از روش شكافت استفاده می شد. اما امروزه بمب های همجوشی از فرآیند همجوشی به عنوان ماشه آغازگر استفاده می كنند.بمب های شكافتی (فیزیونی): یك بمب شكافتی از ماده ای مانند اورانیوم 235 برای خلق یك انفجار هسته ای استفاده می كند. اورانیوم 235 ویژگی منحصر به فردی دارد كه آن را برای تولید هم انرژی هسته ای و هم بمب هسته ای مناسب می كند. اورانیوم 235 یكی از نادر موادی است كه می تواند زیر شكافت القایی قرار بگیرد.اگر یك نوترون آزاد به هسته اورانیوم 235 برود،هسته بی درنگ نوترون را جذب كرده و بی ثبات شده در یك چشم به هم زدن شكسته می شود. این باعث پدید آمدن دو اتم سبك تر و آزادسازی دو یا سه عدد نوترون می شود كه تعداد این نوترون ها بستگی به چگونگی شكسته شدن هسته اتم اولیه اورانیوم 235 دارد. دو اتم جدید به محض اینكه در وضعیت جدید تثبیت شدند از خود پرتو گاما ساطع می كنند. درباره این نحوه شكافت القایی سه نكته وجود دارد كه موضوع را جالب می كند.

1 -  احتمال اینكه اتم اورانیوم 235 نوترونی را كه به سمتش است، جذب كند، بسیار بالا است. در بمبی كه به خوبی كار می كند، بیش از یك نوترون از هر فرآیند فیزیون به دست می آید كه خود این نوترون ها سبب وقوع فرآیندهای شكافت بعدی اند. این وضعیت اصطلاحا «ورای آستانه بحران» نامیده می شود.

2 -  فرآیند جذب نوترون و شكسته شدن متعاقب آن بسیار سریع و در حد پیكو ثانیه (12-10 ثانیه) رخ می دهد.

3 -  حجم عظیم و خارق العاده ای از انرژی به صورت گرما و پرتو گاما به هنگام شكسته شدن هسته آزاد می شود. انرژی آزاد شده از یك فرآیند شكافت به این علت است كه محصولات شكافت و نوترون ها وزن كمتری از اتم اورانیوم 235 دارند. این تفاوت وزن نمایان گر تبدیل ماده به انرژی است كه به واسطه فرمول معروف mc2= E محاسبه می شود. حدود نیم كیلوگرم اورانیوم غنی شده به كار رفته در یك بمب هسته ای برابر با چندین میلیون گالن بنزین است. نیم كیلوگرم اورانیوم غنی شده انداز ه ای معادل یك توپ تنیس دارد. در حالی كه یك میلیون گالن بنزین در مكعبی كه هر ضلع آن 17 متر (ارتفاع یك ساختمان 5 طبقه) است، جا می گیرد. حالا بهتر می توان انرژی آزاد شده از مقدار كمی اورانیوم 235 را متصور شد.برای اینكه این ویژگی های اروانیوم 235 به كار آید باید اورانیوم را غنی كرد. اورانیوم به كار رفته در سلاح های هسته ای حداقل باید شامل نود درصد اورانیوم 235 باشد.در یك بمب شكافتی، سوخت به كار رفته را باید در توده هایی كه وضعیت «زیر آستانه بحران» دارند، نگه داشت. این كار برای جلوگیری از انفجار نارس و زودهنگام ضروری است. تعریف توده ای كه در وضعیت «آستانه بحران» قرار داد چنین است: حداقل توده از یك ماده با قابلیت شكافت كه برای رسیدن به واكنش شكافت هسته ای لازم است. این جداسازی مشكلات زیادی را برای طراحی یك بمب شكافتی با خود به همراه می آورد كه باید حل شود.

1 - دو یا بیشتر از دو توده «زیر آستانه بحران» برای تشكیل توده «ورای آستانه بحران» باید در كنار هم آورده شوند كه در این صورت موقع انفجار به نوترون بیش از آنچه كه هست برای رسیدن به یك واكنش شكافتی، نیاز پیدا خواهد شد.

2 -  نوترون های آزاد باید در یك توده «ورای آستانه بحران» القا شوند تا شكافت آغاز شود.

3 -  برای جلوگیری از ناكامی بمب باید هر مقدار ماده كه ممكن است پیش از انفجار وارد مرحله شكافت شود برای تبدیل توده های «زیر آستانه بحران» به توده هایی «ورای آستانه بحران» از دو تكنیك «چكاندن ماشه» و «انفجار از درون» استفاده می شود.تكنیك «چكاندن ماشه» ساده ترین راه برای آوردن توده های «زیر بحران» به همدیگر است. بدین صورت كه یك تفنگ توده ای را به توده دیگر شلیك می كند. یك كره تشكیل شده از اورانیوم 235 به دور یك مولد نوترون ساخته می شود. گلوله ای از اورانیوم 235 در یك انتهای تیوپ درازی كه پشت آن مواد منفجره جاسازی شده، قرار داده می شود.كره یاد شده در انتهای دیگر تیوپ قرار می گیرد. یك حسگر حساس به فشار ارتفاع مناسب را برای انفجار چاشنی و بروز حوادث زیر تشخیص می دهد:

1 -  انفجار مواد منفجره و در نتیجه شلیك گلوله در تیوپ

2 -  برخورد گلوله به كره و مولد و در نتیجه آغاز واكنش شكافت

3 -  انفجار بمب

در «پسر بچه» بمبی كه
در سال های پایانی جنگ جهانی دوم بر شهر هیروشیما انداخته شد، تكنیك «چكاندن ماشه» به كار رفته بود. این بمب 5/14 كیلو تن برابر با 500/14 تن TNT بازده و 5/1 درصد كارآیی داشت. یعنی پیش از انفجار تنها 5/1 درصد ازماده مورد نظر شكافت پیدا كرد.

در همان ابتدای «پروژه منهتن»، برنامه سری آمریكا در تولید بمب اتمی،
دانشمندان فهمیدند كه فشردن توده ها به همدیگر و به یك كره با استفاده از انفجار درونی می تواند راه مناسبی برای رسیدن به توده «ورای آستانه بحران» باشد. البته این تفكر مشكلات زیادی به همراه داشت. به خصوص این مسئله مطرح شد كه چگونه می توان یك موج شوك را به طور یكنواخت، مستقیما طی كره مورد نظر، هدایت و كنترل كرد؟افراد تیم پروژه «منهتن» این مشكلات را حل كردند. بدین صورت، تكنیك «انفجار از درون» خلق شد. دستگاه انفجار درونی شامل یك كره از جنس اورانیوم 235 و یك بخش به عنوان هسته است كه از پولوتونیوم 239 تشكیل شده و با مواد منفجره احاطه شده است. وقتی چاشنی بمب به كار بیفتد حوادث زیر رخ می دهند:

1 -  انفجار مواد منفجره موج شوك ایجاد می كند.

2 -  موج شوك بخش هسته را فشرده می كند.

3 -  فرآیند شكافت شروع می شود.

4 -  بمب منفجر می شود.

در «مرد گنده» بمبی كه در سال های
پایانی جنگ جهانی دوم بر شهر ناكازاكی انداخته شد، تكنیك «انفجار از درون» به كار رفته بود. بازده این بمب 23 كیلو تن و كارآیی آن 17درصد بود.شكافت معمولا در 560 میلیاردم ثانیه رخ می دهد.بمب های همجوشی: بمب های همجوشی كار می كردند ولی كارآیی بالایی نداشتند. بمب های همجوشی كه بمب های «ترمونوكلئار» هم نامیده می شوند، بازده و كارآیی به مراتب بالاتری دارند. برای تولید بمب همجوشی باید مشكلات زیر حل شود:دوتریوم و تریتیوم مواد به كار رفته در سوخت همجوشی هر دو گازند و ذخیره كردنشان دشوار است. تریتیوم هم كمیاب است و هم نیمه عمر كوتاهی دارد بنابراین سوخت بمب باید همواره تكمیل و پر شود.دوتریوم و تریتیوم باید به شدت در دمای بالا برای آغاز واكنش همجوشی فشرده شوند. در نهایت «استانسیلا اولام» دریافت كه بیشتر پرتو به دست آمده از یك واكنش فیزیون، اشعه X است كه این اشعه X می تواند با ایجاد درجه حرارت بالا و فشار زیاد مقدمات همجوشی را آماده كند. بنابراین با به كارگیری بمب شكافتی در بمب همجوشی مشكلات بسیاری حل شد. در یك بمب همجوشی حوادث زیر رخ می دهند:

1 -  بمب شكافتی با انفجار درونی ایجاد اشعه X می كند.

2 -  اشعه X درون بمب و در نتیجه سپر جلوگیری كننده از انفجار نارس را گرم می كند.

3 -  گرما باعث منبسط شدن سپر و سوختن آن می شود. این كار باعث ورود فشار به درون لیتیوم - دوتریوم می شود.

4 –  لیتیوم - دوتریوم 30 برابر بیشتر از قبل تحت فشار قرار می گیرند.

5 -  امواج شوك فشاری واكنش شكافتی را در میله پولوتونیومی آغاز می كند.

6 -  میله در حال شكافت از خود پرتو، گرما و نوترون می دهد.

7 -  نوترون ها به سوی لیتیوم - دوتریوم رفته و با چسبیدن به لیتیوم ایجاد تریتیوم می كند.

8 -  تركیبی از دما و فشار برای وقوع واكنش همجوشی تریتیوم - دوتریوم ودوتریوم - دوتریوم و ایجاد پرتو، گرما و نوترون بیشتر، بسیار مناسب است.

9 -  نوترون های آزاد شده از واكنش های همجوشی باعث القای شكافت در قطعات اورانیوم 238 كه در سپر مورد نظر به كار رفته بود، می شود.

10 -  شكافت قطعات اروانیومی ایجاد گرما و پرتو بیشتر می كند.

11 -  بمب منفجر شود.

بمب اتمی نام رایج وسایل انفجاری است که در آن‌ها از انرژی آزاد شده در فرآیند شکافت هسته‌ای، یاگداخت هسته‌ای برای تخریب استفاده می‌شود. بمب های اتمی که برمبنای گداخت کار می کنند نسل نوین بمب اتمی هستند و قدرتی بسیار بیشتر از بمب های شکافتی دارند. مبنای آزاد شدن انرژی در هر دو نوع بمب اتمی تبدیل ماده به انرژی (E = mc2)است اما در بمب های گداختی جرم بیشتری از ماده به انرژی تبدیل می شود.

نخستین بمب اتمی که بمبی پلوتونیومی(از نوع شکافتی) بود در سال ۱۹۴۵م در جریان جنگ جهانی دوم در آمریکا ساخته و در شانزدهم ژوئیهٔ ۱۹۴۵م در صحرای آلاموگوردو در نیو مکزیکوی امریکا آزمایش شد. آمریکا تنها کشوری است که از بمب اتمی (شکافتی-اورانیومی در هیروشیما وشکافتی - پلوتونیومی در ناگازاکی) استفاده نظامی کرده است. شوروی در سال ۱۹۴۹ دارای بمب اتمی شد.


اختراع این سلاح،ریشه طولانی در تاریخ علم فیزیک و شیمی دارد اما استفاده از دانش به دست آمده، برای ساخت بمب اتمی بیشتر به روبرت اوپنهایمر و ادوارد تلر نسبت داده می شود

نکاتی درباره بمب اتمی

منطقه انفجار بمب‌های هسته‌ای به پنج قسمت تقسیم می‌شود:۱- منطقه تبخیر ۲- منطقه تخریب کلی ۳- منطقه آسیب شدید گرمایی ۴- منطقه آسیب شدید انفجاری ۵- منطقه آسیب شدید باد وآتش. در منطقه تبخیر درجه حرارتی معادل سیصد میلیون درجه سانتیگراد بوجود می‌‌آید و هر چیزی، از فلز گرفته تا انسان وحیوان، در این درجه حرارت آتش نمی‌گیرد بلکه بخار می‌شود.

آثار زیانبار این انفجار حتی تا شعاع پنجاه کیلومتری وجود دارد و موج انفجار آن که حامل انرژی زیادی است می‌‌تواند میلیون‌ها دلار تجهیزات الکترونیکی پیشرفته نظیر ماهواره‌ها و یا سیستم‌های مخابراتی را به مشتی آهن پاره تبدیل کند و همه آنها را از کار بیندازد.

اینها همه آثار ظاهری و فوری بمب‌های هسته‌ای است . پس از انفجار تا سال‌های طولانی تشعشعات زیانبار رادیواکتیو مانع ادامه حیات موجودات زنده در محل‌های نزدیک به انفجار می‌شود.

پرتو رادیو اکتیو از پرتوهای آلفا، بتا، گاما و تابش نوترونی تشکیل شده است. نوع آلفای آن بسیار خطرناک است ولی توان نفوذ اندکی دارد. این پرتو در بافت زنده تنها کمتر از ۱۰۰ میکرون نفوذ می کند اما برای آن ویرانگر است. پرتوی گاما از دیوار و سنگ نیز عبور می‌کند.هر ۹ میلی‌متر سرب یا هر ۲۵ متر هوا شدت تابش آن را نصف می‌کند. این پرتو نیز با توجه به فرکانس بسیار بالا، انرژی زیادی دارد که اگر به بدن انسان برخورد کند از ساختار سلولی آن عبور کرده و در مسیر حرکت خود باعث تخریب ماده دزوکسی ریبو نوکلوئیک اسید یا همان DNA شده و سرانجام زمینه را برای پیدایش انواع سرطان‌ها، سندرم‌ها ونقایص غیر قابل درمان دیگر فراهم می‌‌کند وحتی این نقایص به نسل‌های آینده نیز منتقل خواهد شد. برای

جلوگیری از نفوذ تابش گامابه حدود ۱۰ سانتی‌متر دیوارهٔ سربی نیاز است

دید کلی

همه ما می‌دانیم چه انرژی عظیم و قابل ملاحظه‌ای در داخل اتمها وجود دارد. این انرژی همان است که عموما آن را انرژی اتمی می‌نامند. اما چون این انرژی در داخل هسته اتمها وجود دارد در زبان علمی نام دقیقتر آنرا انرژی هسته‌ای انتخاب کرده‌اند.
تحولاتی که به کشف بمب هسته‌ای منجر شد

هنگامی که دانشمند ایتالیایی به نام انریکو فرمی ، تجربیات و تحقیقات خود را در زمینه عملی ساختن فعل و انفعالات زنجیری مداوم دنبال می‌کرد. پیش بینی می‌شد که این فعل و انفعال ممکن است انفجاری باشد. به همین سبب ایالات متحده آمریکا که در جنگ جهانی دوم شرکت کرده بود، در صدد برآمد تحت عنوان مبارزه ضد فاشیستی ، نظر دانشمندان اروپایی را برای ساختن سلاح اتمی جلب کند. لذا آن را به ممالک متحده فرا خواند، تا در آنجا که دور از بمبهای دشمن قرار داشت و شرایط کار بهتر بود. امکان استفاده از این انرژی انفجاری را که در سلاحهای جنگی ، مخصوصا بمب مورد بررسی قرار دهند.

پس از گرد آمدن برجسته ترین دانشمندان ، ابتدا تجسساتی در زمینه تصفیه 235U و بعد ساختن پلوتونیوم در آزمایشگاههای چند دانشگاه مهم آمریکا از جمله دانشگاههای کلمبیا و کالیفرنیا صورت گرفت. نتیجه این تجسسات ، ساختن دو کارخانه بزرگ و مجهز برای تصفیه 235U و ساختن پلوتونیوم منجر گردید. سپس آزمایشگاه عظیم و مجهز ، لوس آلاموس در ایالت نیومکزیکو تحت نظر دانشمندان معروف . جی . آر . اوپن هایمر تأسیس شد.

دانشمندان معروف دیگری از کشورهای مختلف از قبیل جیمز چارویک ، اچ بث ، آر. آرویلسون ، نیلس بوهر و غیره ، برای ساختن بمب اتمی ، یعنی سلاحی که ممکن است سبب نابودی بشر و تمدن او گردد، همکاری کردند. در نتیجه تحقیقات دانشمندان ، اساس ساختمان بمب اتمی پی ریزی شد. البته بسیاری از وسایلی که برای بمب اتمی بکار رفت، به کلی افشا نشده ، با این حال با اطلاعات وسیعی که ضمن اظهارات رئیس طرح مانهاتان بدست آمد، طرز عمل تا اندازه‌ای روشن

گردید.

 

تاریخچه اولین انفجارهای هسته‌ای

اولین بار در شانزدهم ژوید سال 1945 ، بمب اتمی کوچک ، به عنوان آزمایش ، در صحرای الاموگوردو واقع در ایالت نیومکزیکو منفجر گردید. بمب را در انتهای بمبی از فولاد نصب کرده بودند و فرمان انفجار آن از پناهگاهی به فاصله 10 کیلومتر صادر می‌شد. محل دیده بانی ناظر این در 17 کیلومتری نقطه انفجار بود. نتیجه این آزمایش به قدری وحشت انگیز بود، که از آنچه قبلا پیش بینی شده بود تجاوز می‌کرد، از جمله برج فولادین حامل بمب به کلی تبخیر شده و در جای آن گودالی وسیع بوجود آمده بود.

کمتر از یک ماه بعد ، بمب اتمی دیگری که قدرت تخریبی آن معادل (1000 تن TNT) بود، روی بندر هیروشیما در ژاپن منفجر گردید (انفجار هیروشیما)، که در نتیجه ، آن شهر به کلی ویران شد و چند هزار مردم به هلاکت رسیدند. فقط معدودی از سکنه اطراف شهر از این بلا جان به در بردند، که هنوز بازماندگان آنان از اثرات زیان بخش تشعشعات هسته‌ای آن رنج می‌برند.

سومین بمب اتمی روز نهم ماه اوت روی شهر ناکازاکی منفجر شد و این دو فاجعه تاریخی کشور ژاپن را در مقابل ایالت متحده آمریکا به زانو در آورد. هر چند که پس از جنگ جهانی دوم دولت آمریکا نام طرح مانهاتان را به کمسیون انرژی اتمی تبدیل کرد و فعالیت این کمسیون را به موارد استفاده از انرژی اتمی در صنعت ، پزشکی و کشاورزی تخصیص داد و در حال حاضر یک کمسیون بین المللی نیز برای استفاده‌های صلح جویانه از انرژی اتمی فعالیت می‌کنند. بنابراین هنوز هم آزمایشهای سلاحهای هسته‌ای ادامه دارد و بدین وسیله دول بزرگ جهان در برابر یکدیگر قدرت نمایی می‌کنند.

ساختمان بمب هسته‌ای

ساختار سلاح هسته‌ای به این صورت است که هر گاه مقدار عنصر قابل شکافت ، که از اندازه بحرانی بیشتر باشد، پدیده شکافت شروع می شود. این پدیده خیلی سریع پیشرفت می‌کند و با آزاد شدن مقادیر عظیم انرژی در مدت بسیار کوتاه ، انفجار مهیبی رخ می‌دهد. ولی از آنجایی که بمب باید در لحظه دلخواه منفجر شود، مقداری از 235U ، یا 239Pu را که خالص بوده و حجم کلی آن از اندازه بحرانی بیشتر باشد، به چند قسمت مجزا ، که هر یک از آنها از اندازه بحرانی کمتر است، تقسیم می‌کنند و این قسمتها را در محفظه‌ای طوری قرار می‌دهند که نوترونهایی که ممکن است در هر یک از آنها آزاد شوند، در قسمت دیگر نفوذ نکنند.

در این تقسیم بندی هرگاه به هر روشی در یکی از اجزای بمب پدیده شکافت شروع شود، در لحظه‌ای که انفجار باید صورت گیرد، رخداد پدیده شکافت زنجیری و مداوم نخواهد بود. این مواد با جرمهای زیر جرم بحرانی عنصر قابل شکافت را به هم نزدیک می‌کنند. تا مجموع آنها از جرم بحرانی بیشتر شود و واکنش زنجیری به وقوع بپیوندد.

نباید فراموش کرد که پیشرفت واکنش زنجیری بسیار سریع است و انفجار اتمی در قطعات اورانیوم فقط در حدود یک میلیونم ثانیه طول می‌کشد. لذا اگر اندازه‌های بحرانی زیر را به آهستگی به هم نزدیک کنیم. ممکن است قبل از تماس ، واکنش زنجیری شروع شود و شدت گرمای حاصل از شکافتهای اولیه به حدی گردد، که قبل از انفجار واقعی ، ماده قابل شکافت را متلاشی سازد و واکنش زنجیری به خاموشی گراید. برای رفع نقایص بمب هسته‌ای به صورت زیر عمل می‌کنیم:

اولا اتصال قطعات اورانیوم بوسیله یک ماده منفجره قوی نظامی صورت می‌گیرد.

ثانیا محفظه ماده اتمی را بسیار ضخیم و محکم می سازد. تا در آغاز واکنش زنجیری از متلاشی شدن ماده مزبور جلوگیری کند و سپس انفجار واقعی صورت

گیرد.  

بهینه سازی خروجی بمب و افزایش قدرت آن

طرق مختلف نزدیک کردن قطعات اورانیوم یا پلوتونیوم به یکدیگر هنوز یک موضوع سری نظامی است. ولی واقعیت این است که هر چه سرعت اتصال قطعات زیادتر باشد، واکنش زنجیری سریعتر و و مقدار بیشتری از هسته‌های اورانیوم موجود شکافته شده و بهره سلاح اتمی بیشتر می‌شود.

اصولا اتصال سریع قطعات است که انفجار مهیب بمب اتمی را بوجود می‌آورد. اگر منعکس کننده‌ای به دور ماده اتمی قرار داده شود، از فرار نوترونها جلوگیری نموده و شکافت زنجیری تسریع می‌گردد. استفاده از منعکس کننده نوترون ، وزن بحرانی را نیز تقلیل می‌دهد.

باید توجه داشت که حتی در بهترین شرایط همه اورانیوم موجود در یک بمب اتمی تحت عمل شکافتن قرار نمی‌گیرد و در شرایط بسیار مناسب تنها در حدود 10 درصد ماده هسته‌ای شکافته می‌شود و بقیه در نتیجه ، انفجار تبدیل به غبار شده و در فضا پخش می‌گردند بدون اینکه هسته‌های آنها شکافته شوند.

جرم بحرانی از اسرار نظامی است و ممالکی که آن را می‌دانند به شدت از فاش شدن آن جلوگیری می‌کنند. بنابرین از مطالبی که در این باره منتشر شده است، چنین بر می آید که جرم بحرانی باید بین ا و 10 کیلوگرم باشند.

وجود جرم بحرانی ، افزایش قدرت بمب اتمی را محدود می‌کند. زیرا برای آنکه بتوانیم انفجاری ایجاد کنیم:

اولا نباید مقدار سوختی کمتر از جرم بحرانی بکار بریم و این مقدار حد پایین بمب اتمی را تعیین می‌کند.

ثانیا وزن هر یک از قطعات اورانیوم درون بمب نمی‌تواند بیش از وزن بحرانی باشد. زیرا در آن صورت هر قطعه خود به خود منفجر خواهد شد.

ساختن بمبهای بیش از دو قطعه نیز بسیار مشکل است. زیرا اگر دو قطعه از قطعات اورانیوم ، حتی به اندازه یک میلیونم ثانیه قبل از قطعات دیگر به هم وصل شوند، انفجار اتمی صورت خواهد گرفت و باعث پراکندگی قطعات دیگر اورانیوم خواهد شد. قطعات دیگر مجال دخول در قطعات زنجیری را نخواهند یافت. به عبارت دیگر بطور کلی میزان اتمهای اورانیومی که در واکنشهای زنجیری وارد می‌شوند، با افزایش تعداد قطعات داخل بمب ، تقلیل می‌یابد و عمل انفجار ناقص می‌ماند.

بمب اتمی

بمب اتمی 2

بمب اتمی 3

نگاه اجمالی

آنچه خداوند در طبیعت به ودیعه نهاده است، اگر بصورت صحیح و در جهت درست مورد استفاده قرار گیرد، وسایل رفاه و آسایش بیشتر را تأمین خواهد کرد. اما اگر این امکانات خدادادی در جهت نادرست و نامشروع مورد بهره برداری قرار گیرند، نه تنها وسیله‌ای برای آرامش و آسایش او نخواهد بود، بلکه بلای جان او شده و وسیله‌ای برای تهدید هستی او تبدیل خواهد شد. یکی از این منابع طبیعی سنگ معدن اورانیوم است که اگر بصورت درست مورد استفاده قرار گیرد، بسیار مفید بوده و به تعداد فوق‌العاده‌ای می‌تواند انرژی برق مورد استفاده بشر را تأمین کند، اما متأسفانه استفاده‌های نادرست سبب شده است که این عنصر خدادادی ماده اولیه سلاحهای مرگبار باشد که بمب اتمی یکی از این نمونه‌ها می‌باشد.

تاریخچه

استفاده از انرژی هسته‌ای به مقیاس زیاد بین سالهای 1939 تا 1945 میلادی در ایالات متحده آمریکا انجام شد. این امر زیر فشار جنگ جهانی دوم ، بصورت نتیجه تلاشهای مشترک تعداد زیادی از دانشمندان و مهندسان صورت گرفت. دست اندرکارانی که در ایالات متحده به این کار اشتغال داشتند، آمریکایی ، بریتانیایی و پناهندگان اروپایی کشورهایی بودند که زیر سلطه فاشیسم قرار داشتند. تلاش آنان این بود که قبل از آلمانیها به یک سلاح هسته‌ای دست پیدا کنند ، این سلاح هسته‌ای همان بمب اتمی بود.

بمب اتمی چیست؟

بمب اتمی در اصل یک راکتور هسته‌ای ‌کنترل نشده است که در آن یک واکنش هسته‌ای بسیار وسیع در مدت یک میلیونیم ثانیه در سراسر ماده صورت می‌گیرد. بنابراین ، این واکنش با راکتور هسته‌ای کنترل شده تفاوت دارد. در راکتور هسته‌ای کنترل شده ، شرایط به گونه‌ای سامان یافته است که انرژی حاصل از شکافت بسیار کندتر و اساسا با سرعت ثابت رها می‌شود. در این راکتور ، ماده شکافت پذیر به گونه‌ای با مواد دیگر آمیخته می‌شود که بطور متوسط ، فقط یک نوترون گسیل یافته از عمل شکافت موجب شکافت هسته دیگر می‌شود، و واکنش زنجیری به این طریق فقط تداوم خود را حفظ می‌کند. اما در یک بمب اتمی ، ماده شکافت‌پذیر خالص است، یعنی یک متعادل کننده آمیخته نیست و طراحی آن به گونه‌ای است که تقریبا تمام نوترونهای گسیل یافته از هر شکافت می‌تواند در هسته‌های دیگر شکافت ایجاد کند.

عناصر اصلی سازنده

بمب اتمی در طول جنگ جهانی دوم از راکتورهای هسته‌ای برای تولید مواد خام نوعی بمب هسته‌ای ، یعنی برای ساختن 239Pu از 235U استفاده می‌شد. هر دو این عناصر می‌توانند یک واکنش زنجیری کنترل نشده سریع ایجاد کنند. بمبهای هسته‌ای یا اتمی از هر دو این مواد ساخته می‌شوند. تنها یک بمب اتمی که از 235U ساخته شده بود، شهر هیروشیما در ژاپن را در 6 آگوست سال 1945 میلادی ویران کرد. بمب دیگری که از 239U در ساختن آن بکار برده شده بود، سه روز بعد شهر ناکازاکی کشور ژاپن را با خاک یکسان ساخت.

 


عواقب ناشی از بمب اتمی

یک مسئله فرعی ، ریزشهای رادیواکتیو حاصل از آزمایش بمبهای اتمی است. در انفجار بمب اتمی مقدار قابل توجهی محصولات شکافت رادیواکتیو پراکنده می‌شوند. این مواد بوسیله باد از یک بخش جهان به نقاط دیگر آن منتقل می‌شوند و بوسیله باران و برف از جو زمین فرو می‌ریزند. بعضی از این مواد رادیواکتیو طول عمر زیادی دارند، لذا بوسیله مواد غذایی گیاهی جذب شده و بوسیله مردم و حیوانات خورده می‌شوند. معلوم شده است که اینگونه مواد رادیواکتیو آثار ژنتیکی و همچنین آثار جسمانی زیان آوری دارند. یکی از فراوانترین محصولات حاصل از شکافت 235U یا 239Pu ، که از لحاظ شیمیایی شبیه 4020Ga است. بنابراین وقتی که 90Sr حاصل از ریزشهای رادیواکتیو وارد بدن می‌شود، به ماده استخوانی بدن راه می‌یابد. این عنصر می‌تواند با گسیل ذرات بتا با انرژی 0.54 میلیون الکترون ولت (نیم عمر 28 سال) نابود می‌شوند، که می‌تواند به سلولها آسیب رسانده و موجب بروز انواع بیماریها از قبیل تومور استخوان ، لوکمیا و ... ، بخصوص در کودکان در حال رشد ، می‌شود.

بمب اتمب 4

بمب اتمی 5


.: Weblog Themes By WeblogSkin :.
درباره وبلاگ


این وبلاگ جهت برقراری ارتباط بهتر و صمیمی تر با دانش آموزان می باشد شما می توانید نظرات و مطالب خود را به آدرس rezabehtarin@yahoo.com ارسال کنید

آمار سایت
بازدیدهای امروز : نفر
بازدیدهای دیروز : نفر
كل بازدیدها : نفر
بازدید این ماه : نفر
بازدید ماه قبل : نفر
تعداد نویسندگان : عدد
كل مطالب : عدد
آخرین بروز رسانی :